资源类型

期刊论文 112

会议视频 1

年份

2023 3

2022 9

2021 10

2020 7

2019 9

2018 6

2017 4

2016 6

2015 4

2014 9

2013 3

2012 7

2011 7

2010 4

2009 5

2008 2

2007 4

2006 1

2005 2

2003 2

展开 ︾

关键词

失效概率 3

双目标渐进法 2

生态文明发展水平 2

破坏模式 2

ANSYS 1

T形节点 1

一次二阶矩 1

京津冀城市群 1

优化设计 1

体系工程 1

信息理论 1

分布式存储系统;数据可靠性与可用性;异或类纠删码;单节点失效;数据恢复 1

切比雪夫多项式 1

加速湿热老化 1

动态拉伸本构模型 1

医学 1

单目标渐进法 1

原型试验 1

参数估计 1

展开 ︾

检索范围:

排序: 展示方式:

Progressive failure analysis of notched composite plate by utilizing macro mechanics approach

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 623-642 doi: 10.1007/s11709-021-0726-8

摘要: In this study, gradual and sudden reduction methods were combined to simulate a progressive failure in notched composite plates using a macro mechanics approach. Using the presented method, a progressive failure is simulated based on a linear softening law prior to a catastrophic failure, and thereafter, sudden reduction methods are employed for modeling a progressive failure. This combination method significantly reduces the computational cost and is also capable of simultaneously predicting the first and last ply failures (LPFs) in composite plates. The proposed method is intended to predict the first ply failure (FPF), LPF, and dominant failure modes of carbon/epoxy and glass/epoxy notched composite plates. In addition, the effects of mechanical properties and different stacking sequences on the propagation of damage in notched composite plates were studied. The results of the presented method were compared with experimental data previously reported in the literature. By comparing the numerical and experimental data, it is revealed that the proposed method can accurately simulate the failure propagation in notched composite plates at a low computational cost.

关键词: progressive failure     notched composite plate     Hashin failure criterion     macro mechanics approach     finite element method    

Experimental study on the progressive failure and its anchoring effect of weak-broken rock vertical slope

Hehua ZHU, Qianwei XU, Wenqi DING, Feng HUANG

《结构与土木工程前沿(英文)》 2011年 第5卷 第2期   页码 208-224 doi: 10.1007/s11709-011-0111-0

摘要: To improve the understanding on the failure behavior and its anchoring effect of weak-broken rock slope, the rock of grade IV according to China is taken as reference prototype, and a series of model tests were carried out in laboratory. These tests can be divided into two categories, that is, with bolt reinforcement and without bolt reinforcement. In which, the stability of slope reinforced with different bolt diameter, different anchor length and different space are studied. The test results show that the collapse of slope is the combination of tension failure at the top and the compression-shearing failure at the bottom of the slope, and its failure process presents progressive characteristics. The contributions of bolt reinforcement are mainly reflected by the aspects of shear resistance, crack resistance and anti-extension. The reinforcement of blot not only can improve the vertical bearing capacity before failure, but also can reduce the vertical settlement and allow greater lateral rock wall deformation; what is more, the stress concentration degree in rock mass can be dispersed, which do help to improve the stability of slope rock mass.

关键词: progressive failure     weak-broken rock     slope     model test     bolt    

Seismic progressive-failure analysis of tall steel structures under beam-removal scenarios

Behrouz BEHNAM, Fahimeh SHOJAEI, Hamid Reza RONAGH

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 904-917 doi: 10.1007/s11709-019-0525-7

摘要: Investigating progressive collapse of tall structures under beam removal scenarios after earthquake is a complex subject because the earthquake damage acts as an initial condition for the subsequent scenario. An investigation is performed here on a 10 story steel moment resisting structure designed to meet the life safety level of performance when different beam removal scenarios after earthquake are considered. To this end, the structure is first subjected to the design earthquake simulated by Tabas earthquake acceleration. The beam removal scenarios are then considered at different locations assuming that both ends connections of the beam to columns are simultaneously detached from the columns; thus the removed beam falls on the underneath floor with an impact. This imposes considerable loads to the structure leading to a progressive collapse in all the scenarios considered. The results also show that the upper stories are much more vulnerable under such scenarios than the lower stories. Hence, more attention shall be paid to the beam-to-column connections of the upper stories during the process of design and construction.

关键词: progressive collapse     tall steel moment-resisting frames     non-linear dynamic analysis     beam-removal scenario     impact    

Dynamic performance of submerged floating tunnel with different mooring styles subjected to anchor cable failure

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0932-7

摘要: Submerged floating tunnels (SFTs) are novel structures for transportation across long- and deep-strait regions. Owing to severe wave and current excitation as well as the effects of underwater structures and corrosion, the risk of local anchor cable failure is high, which can result in the progressive failure of the entire structure. In this study, experimental and numerical investigations are conducted to analyze the dynamic behavior of an SFT with different mooring styles under local cable failure. A custom-designed cable failure device and the birth-and-death element method are used to simulate cable failure (i.e., progressive failure) via experiments and numerical simulation, respectively. A physical-scale segmental model of an SFT with different mooring styles under anchor cable failure is developed in this study. A segmental and entire-length mathematical model is developed using the ANSYS program to perform the numerical simulation. The results of the segmental numerical and experimental models indicate good agreement. The dynamic response of an SFT with different mooring styles under cable failure is comprehensively investigated by investigating the effects of key parameters (wave period, buoyant weight ratio, and cable failure mechanism). Moreover, the progressive failure of the SFT under cable failure is investigated via a segment model test and a numerical simulation of its entire length. The present study can serve as a reference for the safer designs of the SFT mooring style.

关键词: dynamic behaviors     submerged floating tunnel     cable failure     mooring style     progressive failure    

Theoretical study of failure in composite pressure vessels subjected to low-velocity impact and internal

Roham RAFIEE, Hossein RASHEDI, Shiva REZAEE

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1349-1358 doi: 10.1007/s11709-020-0650-3

摘要: A theoretical solution is aimed to be developed in this research for predicting the failure in internally pressurized composite pressure vessels exposed to low-velocity impact. Both in-plane and out-of-plane failure modes are taken into account simultaneously and thus all components of the stress and strain fields are derived. For this purpose, layer-wise theory is employed in a composite cylinder under internal pressure and low-velocity impact. Obtained stress/strain components are fed into appropriate failure criteria for investigating the occurrence of failure. In case of experiencing any in-plane failure mode, the evolution of damage is modeled using progressive damage modeling in the context of continuum damage mechanics. Namely, mechanical properties of failed ply are degraded and stress analysis is performed on the updated status of the model. In the event of delamination occurrence, the solution is terminated. The obtained results are validated with available experimental observations in open literature. It is observed that the sequence of in-plane failure and delamination varies by increasing the impact energy.

关键词: composite pressure vessel     low-velocity impact     failure     theoretical solution     progressive damage modeling    

Finite element prediction on the response of non-uniformly arranged pile groups considering progressivefailure of pile-soil system

Qian-Qing ZHANG, Shan-Wei LIU, Ruo-Feng FENG, Jian-Gu QIAN, Chun-Yu CUI

《结构与土木工程前沿(英文)》 2020年 第14卷 第4期   页码 961-982 doi: 10.1007/s11709-020-0632-5

摘要: A uniform arrangement of individual piles is commonly adopted in the conventional pile group foundation, and basin-shaped settlement is often observed in practice. Large differential settlement of pile groups will decrease the use-safety requirements of building, even cause the whole-building tilt or collapse. To reduce differential settlement among individual piles, non-uniformly arranged pile groups can be adopted. This paper presents a finite element analysis on the response of pile groups with different layouts of individual piles in pile groups. Using the user-defined subroutine FRIC as the secondary development platform, a softening model of skin friction and a hyperbolic model of end resistance are introduced into the contact pair calculation of ABAQUS software. As to the response analysis of a single pile, the reliability of the proposed secondary development method of ABAQUS software is verified using an iterative computer program. The reinforcing effects of individual piles is then analyzed using the present finite element analysis. Furthermore, the response of non-uniformly arranged pile groups, e.g., individual piles with variable length and individual piles with variable diameter, is analyzed using the proposed numerical analysis method. Some suggestions on the layout of individual piles are proposed to reduce differential settlement and make full use of the bearing capacity of individual piles in pile groups for practical purposes.

关键词: numerical simulation     non-uniformly arranged pile groups     differential settlement     pile-soil interaction    

Progressive collapse of 2D reinforced concrete structures under sudden column removal

El Houcine MOURID, Said MAMOURI, Adnan IBRAHIMBEGOVIC

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1387-1402 doi: 10.1007/s11709-020-0645-0

摘要: Once a column in building is removed due to gas explosion, vehicle impact, terrorist attack, earthquake or any natural disaster, the loading supported by removed column transfers to neighboring structural elements. If these elements are unable to resist the supplementary loading, they continue to fail, which leads to progressive collapse of building. In this paper, an efficient strategy to model and simulate the progressive collapse of multi-story reinforced concrete structure under sudden column removal is presented. The strategy is subdivided into several connected steps including failure mechanism creation, MBS dynamic analysis and dynamic contact simulation, the latter is solved by using conserving/decaying scheme to handle the stiff nonlinear dynamic equations. The effect of gravity loads, structure-ground contact, and structure-structure contact are accounted for as well. The main novelty in this study consists in the introduction of failure function, and the proper manner to control the mechanism creation of a frame until its total failure. Moreover, this contribution pertains to a very thorough investigation of progressive collapse of the structure under sudden column removal. The proposed methodology is applied to a six-story frame, and many different progressive collapse scenarios are investigated. The results illustrate the efficiency of the proposed strategy.

关键词: failure mechanism     MBS dynamic analysis     gravity loads     structure-ground contact     structure-structure contact     energy conserving/decaying scheme    

Study of the mechanics of progressive collapse of FPB isolated beam-pier substructures

Jingcai ZHANG; Yong DING; Xinchun GUAN

《结构与土木工程前沿(英文)》 2022年 第16卷 第6期   页码 718-728 doi: 10.1007/s11709-022-0815-3

摘要: The horizontal stiffness of the isolated layer is reduced substantially by a friction pendulum bearing (FPB) toprotectthe structure from potential damages caused by earthquakes. However, horizontal stiffness is essential to progressive collapse resistance of structures. This paper presents a simplified model to assess the progressive collapse response of beam-pier substructure isolated by FPB. Progressive collapse resistance by flexural action of the beam and additional resistance owing to the horizontal restraining force was achieved. The influences of the equivalent radius and friction coefficient of the FPB, the applied axial force on the FPB, and span-depth ratio of the beam on the additional resistance were investigated. Simulations were conducted to verify the proposed model. The results show that progressive collapse resistance provided by horizontal restraining can be reduced as large as 46% and 88% during compressive arching action (CAA) and catenary action (CA), respectively. The equivalent radius of the FPB shows limited effect on the progressive collapse response of FPB isolated structures, but friction coefficient and applied axial force, as well as depth ratio of the beam, show significant influences on the additional progressive collapse resistance capacity. Finite element method (FEM) results are in good agreement with the result obtained by the proposed method.

关键词: friction pendulum bearing     progressive collapse     horizontal stiffness     compressive arching action     catenary action    

Investigation on a mitigation scheme to resist the progressive collapse of reinforced concrete buildings

Iman TABAEYE IZADI, Abdolrasoul RANJBARAN

《结构与土木工程前沿(英文)》 2012年 第6卷 第4期   页码 421-430 doi: 10.1007/s11709-012-0181-7

摘要: This study presents the investigation of the approach which was presented by Thaer M. Saeed Alrudaini to provide the alternate load path to redistribute residual loads and preventing from the potential progressive collapse of RC buildings. It was proposed to transfer the residual loads upwards above the failed column of RC buildings by vertical cables hanged at the top to a hat steel braced frame seated on top of the building which in turn redistributes the residual loads to the adjacent columns. In this study a ten-storey regular structural building has been considered to investigate progressive collapse potential. Structural design is based on ACI 318-08 concrete building code for special RC frames and the nonlinear dynamic analysis is carried out using SAP2000 software, following UFC4-023-03 document. Nine independent failure scenarios are adopted in the investigation, including six external removal cases in different floors and three removal cases in the first floor. A new detail is proposed by using barrel and wedge to improve residual forces transfer to the cables after removal of the columns. Simulation results show that progressive collapse of building that resulted from potential failure of columns located in floors can be efficiently resisted by using this method.

关键词: prevent progressive collapse     alternate load path     reinforced concrete buildings     nonlinear dynamic     retrofitting     cable     steel hat braced frame     barrel and wedge    

Exome sequencing greatly expedites the progressive research of Mendelian diseases

null

《医学前沿(英文)》 2014年 第8卷 第1期   页码 42-57 doi: 10.1007/s11684-014-0303-9

摘要:

The advent of whole-exome sequencing (WES) has facilitated the discovery of rare structure and functional genetic variants. Combining exome sequencing with linkage studies is one of the most efficient strategies in searching disease genes for Mendelian diseases. WES has achieved great success in the past three years for Mendelian disease genetics and has identified over 150 new Mendelian disease genes. We illustrate the workflow of exome capture and sequencing to highlight the advantages of WES. We also indicate the progress and limitations of WES that can potentially result in failure to identify disease-causing mutations in part of patients. With an affordable cost, WES is expected to become the most commonly used tool for Mendelian disease gene identification. The variants detected cumulatively from previous WES studies will be widely used in future clinical services.

关键词: genetics     whole-exome sequencing     Mendelian disease     disease gene    

Integrated management of cardiac failure: the cardiac failure clinic

null

《医学前沿(英文)》 2011年 第5卷 第1期   页码 20-25 doi: 10.1007/s11684-011-0106-1

摘要:

The prevalence of the risk factors and the risk of cardiac failure are both increasing in China. This might be the consequence of the changes of the life conditions (emigration to the urban areas, changes in the diet and life style, lack of physical exercise, etc.). The wide range of clinical presentations of cardiac failure (acute or chronic) and of therapeutic approaches (medical or surgical) makes necessary the integration within the same structure of the various experts involved in the diagnosis and the treatment of cardiac diseases. Technologic and human resources required to offer all the options represent a multifaceted commitment which should be focused optimally in dedicated centers. In these centers, collaboration should replace competition between the medical and the surgical cardiac specialists. Development of team work should permit to optimize the cost efficacy of the treatments. Most of all, such a structure will facilitate the translation of innovative therapies between the research centers and clinical facilities.

关键词: cardiac failure     cardiac transplantation     mechanical circulatory support    

Life cycle and performance based seismic design of major bridges in China

FAN Lichu

《结构与土木工程前沿(英文)》 2007年 第1卷 第3期   页码 261-266 doi: 10.1007/s11709-007-0033-z

摘要: The idea of life cycle and performance based seismic design of major bridges is introduced. Based on the key components and non-key components of a bridge and the consideration of the inspectability, replaceability, reparability, controllability and retrofitability of the bridge components, different seismic design levels and expected performance objectives are suggested for the major bridges in China. The vulnerability analysis and progressive collapse analysis, as well as risk assessment, are also proposed to be the important issues to study in order to guide the seismic design of major bridges in the future.

关键词: controllability     progressive     reparability     different     important    

Bending failure performance of a shield tunnel segment based on full-scale test and numerical analysis

《结构与土木工程前沿(英文)》   页码 1033-1046 doi: 10.1007/s11709-023-0973-y

摘要: This study focuses on the bending failure performance of a shield tunnel segment. A full-scale test was conducted to investigate deformation and failure characteristics. During the loading, the bending failure process can be divided into four stages: the elastic stage, working stage with cracks, failure stage, and ultimate stage. The characteristic loads between contiguous stages are the cracking, failure, and ultimate loads. A numerical model corresponding to the test was established using the elastoplastic damage constitutive model of concrete. After a comparative analysis of the simulation and test results, parametric studies were performed to discuss the influence of the reinforcement ratio and proportion of tensile longitudinal reinforcement on the bearing capacity. The results indicated that the change in the reinforcement ratio and the proportion of tensile longitudinal reinforcement had little effect on the cracking load but significantly influenced the failure and ultimate loads of the segment. It is suggested that in the reinforcement design of the subway segment, the reinforcement ratio and the proportion of tensile longitudinal reinforcement can be chosen in the range of 0.7%–1.2% and 49%–55%, respectively, allowing the segment to effectively use the reinforcement and exert the design strength, thereby improving the bearing capacity of the segment.

关键词: shield tunnel     bearing capacity     failure mechanism     segment reinforcement    

Overview on acute-on-chronic liver failure

null

《医学前沿(英文)》 2016年 第10卷 第1期   页码 1-17 doi: 10.1007/s11684-016-0439-x

摘要:

Liver failure (LF) is defined as severe dysfunction in hepatic synthesis, detoxification, and metabolism induced by various etiologies. Clinical presentation of LF typically includes severe jaundice, coagulation disorder, hepatic encephalopathy, and ascites. LF can be classified into acute LF, acute-on-chronic LF (ACLF), and chronic LF. ACLF has been demonstrated as a distinct syndrome with unique clinical presentation and outcomes. The severity, curability, and reversibility of ACLF have attracted considerable attention. Remarkable developments in ACLF-related conception, diagnostic criteria, pathogenesis, and therapy have been achieved. However, this disease, especially its diagnostic criteria, remains controversial. In this paper, we systemically reviewed the current understanding of ACLF from its definition, etiology, pathophysiology, pathology, and clinical presentation to management by thoroughly comparing important findings between east and west countries, as well as those from other regions. We also discussed the controversies, challenges, and needs for future studies to promote the standardization and optimization of the diagnosis and treatment for ACLF.

关键词: liver failure     chronic liver failure     acute-on-chronic liver failure     diagnosis     prognosis     treatment    

Surficial stability analysis of soil slope under seepage based on a novel failure mode

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 712-726 doi: 10.1007/s11709-021-0729-5

摘要: Normally, the edge effects of surficial landslides are not considered in the infinite slope method for surficial stability analysis of soil slopes. In this study, the limit stress state and discrimination equation of an infinite slope under saturated seepage flow were analyzed based on the Mohr-Coulomb strength criterion. Therefore, a novel failure mode involving three sliding zones (upper tension zone, middle shear sliding zone, and lower compression zone) was proposed. Accordingly, based on the limit equilibrium analysis, a semi-analytical framework considering the edge effect for the surficial stability of a soil slope under downslope seepage was established. Subsequently, the new failure mode was verified via a numerical finite element analysis based on the reduced strength theory with ABAQUS and some simplified methods using SLIDE software. The results obtained by the new failure mode agree well with those obtained by the numerical analysis and traditional simplified methods, and can be efficiently used to assess the surficial stability of soil slopes under rainwater seepage. Finally, an evaluation of the infinite slope method was performed using the semi-analytical method proposed in this study. The results show that the infinite slope tends to be conservative because the edge effect is neglected, particularly when the ratio of surficial slope length to depth is relatively small.

关键词: soil slope     seepage     surficial failure mode     stress state     edge effects    

标题 作者 时间 类型 操作

Progressive failure analysis of notched composite plate by utilizing macro mechanics approach

期刊论文

Experimental study on the progressive failure and its anchoring effect of weak-broken rock vertical slope

Hehua ZHU, Qianwei XU, Wenqi DING, Feng HUANG

期刊论文

Seismic progressive-failure analysis of tall steel structures under beam-removal scenarios

Behrouz BEHNAM, Fahimeh SHOJAEI, Hamid Reza RONAGH

期刊论文

Dynamic performance of submerged floating tunnel with different mooring styles subjected to anchor cable failure

期刊论文

Theoretical study of failure in composite pressure vessels subjected to low-velocity impact and internal

Roham RAFIEE, Hossein RASHEDI, Shiva REZAEE

期刊论文

Finite element prediction on the response of non-uniformly arranged pile groups considering progressivefailure of pile-soil system

Qian-Qing ZHANG, Shan-Wei LIU, Ruo-Feng FENG, Jian-Gu QIAN, Chun-Yu CUI

期刊论文

Progressive collapse of 2D reinforced concrete structures under sudden column removal

El Houcine MOURID, Said MAMOURI, Adnan IBRAHIMBEGOVIC

期刊论文

Study of the mechanics of progressive collapse of FPB isolated beam-pier substructures

Jingcai ZHANG; Yong DING; Xinchun GUAN

期刊论文

Investigation on a mitigation scheme to resist the progressive collapse of reinforced concrete buildings

Iman TABAEYE IZADI, Abdolrasoul RANJBARAN

期刊论文

Exome sequencing greatly expedites the progressive research of Mendelian diseases

null

期刊论文

Integrated management of cardiac failure: the cardiac failure clinic

null

期刊论文

Life cycle and performance based seismic design of major bridges in China

FAN Lichu

期刊论文

Bending failure performance of a shield tunnel segment based on full-scale test and numerical analysis

期刊论文

Overview on acute-on-chronic liver failure

null

期刊论文

Surficial stability analysis of soil slope under seepage based on a novel failure mode

期刊论文